Free-standing nitrogen-doped carbon nanofiber films as highly efficient electrocatalysts for oxygen reduction.
نویسندگان
چکیده
Free-standing nitrogen-doped carbon nanofiber (NCNF) films based on polyacrylonitrile (PAN) were prepared simply by the combination of electrospinning and thermal treatment. We reused the nitrogen-rich gas generated as the byproduct of PAN at elevated temperature, mainly NH3, for surface etching and nitrogen doping. The as-obtained NCNFs exhibited a rougher surface and smaller diameter than pristine carbon nanofibers. Despite the decreased total N content, a significant increase in the content of pyrrolic-N was observed for the NCNFs. In application to electrochemistry, the free-standing NCNF films showed comparable catalytic activity with a close four-electron pathway to a commercial Pt/C catalyst in alkaline medium toward oxygen reduction reaction (ORR), which can be attributed to the nitrogen doping and high hydrophilicity. More importantly, the ORR current density on the NCNFs only dropped 6.6% after 10,000 s of continuous operation, suggesting an enhanced long-time durability. In addition, the NCNFs also showed better electrocatalytic selectivity than Pt/C. Our work reveals a facile but efficient approach for the synthesis of free-standing NCNF films as a promising alternative to Pt-based electrocatalysts in fuel cells.
منابع مشابه
Preparation of Nitrogen-Doped Graphene By Solvothermal Process as Supporting Material for Fuel Cell Catalysts
Development of efficient electrocatalysts for oxygen reduction reaction (ORR) is one of the most important issues for optimizing the performance of fuel cells and metal-air batteries. The introduction of nitrogen into carbon nanostructures has created new pathways for the development of non-precious electrocatalysts in fuel cells. In this work, nitrogen-doped graphene (NG) was synthesized by a ...
متن کاملHighly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions.
Nitrogen-doped graphitic porous carbons (NGPCs) have been synthesized by using a zeolite-type nanoscale metal-organic framework (NMOF) as a self-sacrificing template, which simultaneously acts as both the carbon and nitrogen sources in a facile carbonization process. The NGPCs not only retain the nanopolyhedral morphology of the parent NMOF, but also possess rich nitrogen, high surface area and...
متن کاملCovalent functionalization based heteroatom doped graphene nanosheet as a metal-free electrocatalyst for oxygen reduction reaction.
Oxygen reduction reaction (ORR) is an important reaction in energy conversion systems such as fuel cells and metal-air batteries. Carbon nanomaterials doped with heteroatoms are highly attractive materials for use as electrocatalysts by virtue of their excellent electrocatalytic activity, high conductivity, and large surface area. This study reports the synthesis of highly efficient electrocata...
متن کاملFrom two-dimension to one-dimension: the curvature effect of silicon-doped graphene and carbon nanotubes for oxygen reduction reaction.
For the goal of practical industrial development of fuel cells, inexpensive, sustainable, and highly efficient electrocatalysts for oxygen reduction reactions (ORR) are highly desirable alternatives to platinum (Pt) and other rare metals. In this work, based on density functional theory, silicon (Si)-doped carbon nanotubes (CNTs) and graphene as metal-free, low cost, and high-performance electr...
متن کاملFluorine-doped BP 2000: highly efficient metal-free electrocatalysts for acidic oxygen reduction reaction with superlow H2O2 yield.
Fluorine-doped carbon blacks as inexpensive, high performance electrocatalysts for acidic oxygen reduction reaction were synthesized. The performance of the optimal catalyst (BP-18F) is close to the level of other reported best non-Pt electrocatalysts in acid, but with superlow H2O2 yield (<0.1%) ever. Their high performance is confirmed by quantum calculations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 5 20 شماره
صفحات -
تاریخ انتشار 2013